Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zootaxa ; 4859(4): zootaxa.4859.4.1, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33056179

RESUMO

Nesoecia Scudder, 1893 is a neotropical genus of true katydids (Pseudophyllinae) comprising four species: N. brasiliensis (Bruner, 1915) from Brazil (Bahia), N. cooksonii (Butler, 1877) from Ecuador (Galápagos, Floreana Island), and two species from southern Mexico: N. insignis (Hebard, 1932) from Yucatán (Temax and Chichen-Itza), and N. nigrispina (Stål, 1873) reported also from Yucatán and the State of Tabasco (Teapa). Members of this genus are large and attractive insects, nonetheless, they have been poorly studied since they are not abundant or commonly collected. This paper describes four new species of Nesoecia from the Huasteca Region in northeastern México: N. huichihuayan n. sp., N. potoniya n. sp., N. insolita n. sp., and N. constricta n. sp. Taxa delimitation is based on morphological diagnostic characters and parameters of the acoustic signal. Information on distribution, habitat, and behavior is provided. [urn:lsid:zoobank.org:act:B932F2DC-97F4-4751-A6F7-0869318364FA].


Assuntos
Ortópteros , Animais , México
2.
Zootaxa ; 4751(2): zootaxa.4751.2.8, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32230422

RESUMO

Two new species of the genus Caloxiphus Saussure Pictet, 1898 (Pseudophyllinae) are described: C. chapulhuacan n. sp., and C. cuicani n. sp., both endemic to the Huasteca Region, State of Hidalgo, Mexico. These two new taxa show morphological affinities to C. championi Saussure Pictet, 1898. However, they may be separated from the latter species on basis of external and internal (genitalia) morphological characters that are provided and illustrated. Acoustic signals for C. cuicani n. sp., and information on distribution for both new taxa are given.


Assuntos
Ortópteros , Acústica , Distribuição Animal , Animais , México
3.
J Insect Sci ; 19(5)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606745

RESUMO

The Central American locust, Schistocerca piceifrons piceifrons (Walker) is a major agricultural pest in Mexico and Central America. Control measures against this pest have generated much environmental damage and substantial financial costs because chemical insecticides are used. Yet various Orthoptera species also appear to be a potential source of nutrients and a source of bioactive metabolites. Here, we studied the presence of secondary metabolites in the adult stage of S. p. piceifrons by applying different colorimetric techniques. Adults were collected from the southern region of Tamaulipas, Mexico, during September-December 2017. These samples were subjected to sequential processes of eviscerating, drying, pulverizing, extracting, and detecting of metabolites. Extractions were carried out in water, 50% ethanol, and absolute ethanol. The presence of phenolic compounds, alkaloids, tannins, saponins, flavonoids, and quantity of antioxidants against the DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ABTS (2, 2'-azino-bis, 3-ethylbenzothiazoline-6-sulfonic acid) radicals were determined and reported. Proximate analysis showed that S. p. piceifrons has a high protein content (80.26%), low fat content (6.21%), and fiber content (12.56%) similar to other Orthoptera species. Chitin and chitosan contents of S. p. piceifrons were 11.88 and 9.11%, respectively; the recovery percentage of chitosan from chitin was 76.71%. Among the Orthoptera, the protein content of this pest is among the highest while its contents of chitin and chitosan are similar to those of other insect species (e.g., Bombix mori Linnaeus [Lepidoptera: Bombycidae]). Our results suggest this pest species is a potential source of bioactive compounds of biotechnological interest for use by pharmaceutical and food industries.


Assuntos
Gafanhotos/química , Animais , Antioxidantes/análise , Quitina/análise , Quitosana/análise , Proteínas de Insetos/análise , México , Peptídeo Hidrolases/análise , Fenóis/análise
4.
Zookeys ; (825): 71-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846901

RESUMO

Leaf beetles (Chrysomelidae: Coleoptera) constitute a highly diverse family of phytophagous insects with high ecological relevance, due to their host plant specificity and their close association to vegetation variables. Therefore, secondary succession and seasonal changes after loss of vegetal cover will have a significant influence on their community patterns. Accordingly, responses of leaf beetles to such environmental heterogeneity make them a suitable taxon for monitoring disturbance, which is more important for endangered habitats such as the low thorn forests (LTF) in northeastern Mexico. We conducted a study in a LTF fragment in order to assess the effects of secondary succession and seasonality on leaf beetle communities, as well as to quantify the importance of Chrysomelidae as an indicator taxon. Landsat scenes were used for delimiting a successional gradient, in which four succession categories were selected: four years, 17 years, and 31 years since loss of vegetal cover, and conserved areas. Eight plots of 100 m2 were randomly delimited in each category; plots were sampled monthly, using an entomological sweep net, from May 2016 to April 2017. In total, 384 samples were collected by the end of study, from which 6978 specimens, six subfamilies, 57 genera, and 85 species were obtained. Species richness was higher in early succession areas. Abundance declined significantly from early successional to conserved areas, but the conserved areas had the higher diversity. Furthermore, differences in abundance were significant between rainy and dry seasons in areas of four, 17, and 31 years of succession, but not in conserved areas; also, all categories had a similar abundance during the dry season. Intermediate (17 and 31 years) and conserved areas differed in the season of higher diversity. Regarding inventory completeness, it was close to or above 70 % for all comparisons, although it was very low for the 17-year category during the rainy season. Faunistic similarity was higher between intermediate categories. A total of 24 species had a significant indicator value. Effects of succession time and seasonality on leaf beetle communities are here quantified for first time in LTF forests. Influences of environmental heterogeneity and intermediate disturbance are discussed as main drivers of the results obtained. Several leaf beetle species are proposed that could be useful for monitoring succession time and secondary LTF vegetation in northeastern Mexico. However, studies must be replicated at other regions, in order to obtain a better characterization of disturbance influence on leaf beetles.

5.
Rev. biol. trop ; 67(1): 266-277, Jan.-Mar. 2019.
Artigo em Inglês | LILACS | ID: biblio-1041909

RESUMO

Abstract Global increase in land cover change and deforestation bring about fragmentation of a high proportion of native vegetation areas. Microclimate is among the first modified factors after vegetation loss, effects of such disturbances are critical for species performance. However, both secondary succession and seasonality provoke further modifications in abiotic environment after disturbances. Although microclimate patterns during succession are well studied for several ecosystems, they are practically unknown for low thorn forests. In Northern Mexico, this is an endangered ecosystem characterized by harboring a high percentage of endemics. Measurement of microclimatic factors is crucial for understanding possible consequences of post-disturbance time on species inhabiting this ecosystem. This work aimed to assess seasonal variation of microclimatic patterns in a succession gradient of four categories (conserved areas, 31, 17 and four years of succession). The study area was delimited using Landsat satellite images (1973, 1986, 2000, 2005, and 2013) in a fragment of low thorn forest in Northeastern Mexico. For microclimate characterization we studied wind speed, temperature, relative humidity, heat index, dew point, and evapotranspiration. Variables were measured monthly on eight plots, in each of the four successional categories, during two different seasons: wet (May through October 2016) and dry season (November 2016 through April 2017). A multivariate discriminant function analysis showed that microclimate differs among successional stages. In the wet season, early succession areas were characterized by higher values of heat index and wind speed, contrary to conserved areas. In the dry season, successional differences were attributed to wind speed and relative humidity. Moreover, microclimate differences between categories and importance of variables measured were both higher only during the dry season. Our results show that seasonality influences greatly microclimatic patterns during secondary succession. In addition, each one of the successional categories exhibited unique microclimatic conditions. Remarkably, four, 17, and even 31 years succession categories differed from conserved areas. This work provides evidence on the great relevance of seasonality and microclimate for studying secondary succession. It is suggested to take both factors into consideration when implementing conservation programs concerning endangered habitats such as low thorn forests. As an ecosystem poorly studied, microclimate characterization provided herein, shall help to a better understanding and management of these areas.(AU)


Resumen El aumento global en el cambio de cobertura vegetal y la deforestación han fragmentado una elevada proporción de áreas de vegetación nativa. El microclima es un factor que se modifica después de la pérdida de vegetación, y los efectos de tales perturbaciones son trascendentales para las especies. Sin embargo, tanto la sucesión secundaria como la estacionalidad implican modificaciones adicionales en el medio abiótico después del disturbio. Aunque los patrones microclimáticos durante la sucesión son conocidos en varios ecosistemas, no se han evaluado en áreas de selva baja espinosa, que constituye un ecosistema amenazado en el norte de México. La medición de tales factores microclimáticos es crucial para comprender las consecuencias de la recuperación post-disturbio en las especies. Por lo tanto, el objetivo del estudio fue evaluar la variación estacional del microclima en un gradiente de sucesión de cuatro categorías (áreas conservadas, 31, 17 y cuatro años de sucesión), delimitadas mediante imágenes de satélite LANDSAT (1973, 1986, 2000, 2005 y 2013) en un fragmento de selva baja espinosa en el noreste de México. Para caracterizar el microclima se consideraron la velocidad del viento, temperatura, humedad relativa, índice de calor, punto de rocío y evapotranspiración. Las variables se midieron de forma mensual, durante un año, en ocho sitios de muestreo en cada una de las cuatro categorías sucesionales, durante dos estaciones diferentes: húmeda (mayo a octubre 2016) y seca (noviembre 2016 hasta abril 2017). A través de un análisis multivariado de funciones discriminantes, se determinó que las categorías sucesionales en la selva baja espinosa son diferentes dependiendo del microclima. En la estación húmeda, las áreas con poco tiempo de sucesión se caracterizaron por valores más altos de índice de calor y velocidad del viento, al contrario de las áreas conservadas. En la estación seca, las diferencias sucesionales se atribuyeron a la velocidad del viento y la humedad relativa. Además, tanto la discriminación entre categorías como la importancia de las variables fueron mayores solo durante la estación seca. Por lo tanto, la estacionalidad determina los patrones microclimáticos durante la sucesión secundaria. Además, cada categoría sucesional representa condiciones microclimáticas únicas, pero difieren de las áreas conservadas incluso después de 31 años de sucesión. De acuerdo con nuestros resultados, la estacionalidad y el microclima son de gran relevancia para el estudio de la sucesión secundaria. Se sugiere considerar ambos factores cuando se implementan programas de conservación de ecosistemas en riesgo, como la selva baja espinosa en el noreste de México. Al ser este un ecosistema poco estudiado, la caracterización microclimática que aquí se proporciona, ayudará a un mejor entendimiento y manejo forestal de dichas áreas.(AU)


Assuntos
Estações do Ano , Fatores Abióticos , Sistemas de Informação Geográfica/organização & administração , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...